1,135 research outputs found

    1/t pressure and fermion behaviour of water in two dimensions

    Full text link
    A variety of metal vacuum systems display the celebrated 1/t pressure, namely power-law dependence on time t, with the exponent close to unity, the origin of which has been a long-standing controversy. Here we propose a chemisorption model for water adsorbates, based on the argument for fermion behaviour of water vapour adsorbed on a stainless-steel surface, and obtain analytically the power-law behaviour of pressure, with an exponent of unity. Further, the model predicts that the pressure should depend on the temperature T according to T^(3/2), which is indeed confirmed by our experiment. Our results should help elucidate the unique characteristics of the adsorbed water.Comment: 11 pages, 4 figure

    Characterisation of an Advanced Nickel Based Superalloy Post Cold Work by Swaging

    Get PDF
    Cylindrical bars of the advanced nickel based superalloy RR1000 were subjected to swaging to induce approximately 30% cold work. Grain size analysis demonstrated a distinct modification to the microstructure whilst electron back scattered diffraction (EBSD) measurements confirmed the evolution of a relatively strong texture parallel with the longitudinal bar axis. Intragranular strain damage was identified. The effects of the swaging on bulk mechanical properties are illustrated across a range of test temperatures

    Boson stars in massive dilatonic gravity

    Get PDF
    We study equilibrium configurations of boson stars in the framework of a class scalar-tensor theories of gravity with massive gravitational scalar (dilaton). In particular we investigate the influence of the mass of the dilaton on the boson star structure. We find that the masses of the boson stars in presence of dilaton are close to those in general relativity and they are sensitive to the ratio of the boson mass to the dilaton mass within a typical few percent. It turns out also that the boson star structure is mainly sensitive to the mass term of the dilaton potential rather to the exact form of the potential.Comment: 9 pages, latex, 9 figures, one figure dropped, new comments added, new references added, typos correcte

    Thermal gradient-induced forces on geodetic reference masses for LISA

    Full text link
    The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodetic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the LISA gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensor that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the LISA sensitivity goals.Comment: 21 pages, 16 figures, submitted to Physical Review

    Rapid production of 87^{87}Rb BECs in a combined magnetic and optical potential

    Full text link
    We describe an apparatus for quickly and simply producing \Rb87 Bose-Einstein condensates. It is based on a magnetic quadrupole trap and a red detuned optical dipole trap. We collect atoms in a magneto-optical trap (MOT) and then capture the atom in a magnetic quadrupole trap and force rf evaporation. We then transfer the resulting cold, dense cloud into a spatially mode-matched optical dipole trap by lowering the quadrupole field gradient to below gravity. This technique combines the efficient capture of atoms from a MOT into a magnetic trap with the rapid evaporation of optical dipole traps; the approach is insensitive to the peak quadrupole gradient and the precise trapping beam waist. Our system reliably produces a condensate with N≈2×106N\approx2\times10^6 atoms every 16\second

    High temperature fatigue behaviour in an advanced nickel based superalloy: The effects of oxidation and stress relaxation at notches

    Get PDF
    The low cycle fatigue performance of the nickel based superalloy RR1000 was investigated under a variety of load waveforms at high temperature, employing a double edge notch geometry under load control. Experiments on a plain cylindrical specimen design under strain control were later performed to simulate the constrained conditions at the root of the notch in order to characterise the interaction between surface constituents and the environment. A significant fatigue debit was demonstrated under both load/strain scenarios when superimposing a dwell period at the minimum point of the cycle. This debit was attributed to a reduction in fatigue crack initiation life resulting from oxidation damage which subsequently cracks under cyclic tension together with a modification to the mean stress through cyclic stabilisation. The same dwell period superimposed at the peak of the cycle was essentially benign for excursions under strain control loading

    Association of computed tomography measures of muscle and adipose tissue and progressive changes throughout treatment with clinical endpoints in patients with advanced lung cancer treated with immune checkpoint inhibitors

    Get PDF
    To investigate the association between skeletal muscle mass and adiposity measures with disease-free progression (DFS) and overall survival (OS) in patients with advanced lung cancer receiving immunotherapy, we retrospectively analysed 97 patients (age: 67.5 ± 10.2 years) with lung cancer who were treated with immunotherapy between March 2014 and June 2019. From computed tomography scans, we assessed the radiological measures of skeletal muscle mass, and intramuscular, subcutaneous and visceral adipose tissue at the third lumbar vertebra. Patients were divided into two groups based on specific or median values at baseline and changes throughout treatment. A total number of 96 patients (99.0 %) had disease progression (median of 11.3 months) and died (median of 15.4 months) during follow-up. Increases of 10 % in intramuscular adipose tissue were significantly associated with DFS (HR: 0.60, 95 % CI: 0.38 to 0.95) and OS (HR: 0.60, 95 % CI: 0.37 to 0.95), while increases of 10 % in subcutaneous adipose tissue were associated with DFS (HR: 0.59, 95 % CI: 0.36 to 0.95). These results indicate that, although muscle mass and visceral adipose tissue were not associated with DFS or OS, changes in intramuscular and subcutaneous adipose tissue can predict immunotherapy clinical outcomes in patients with advanced lung cancer

    Measuring and reporting the capacity development performance of organizations in water and sanitation

    Get PDF
    Within the Water, Sanitation and Hygiene (WASH) sector, a range of organizations offer education and training activities. The aim of these activities is to improve access to water and sanitation services through better design and implementation of WASH interventions (Broughton & Hampshire, 1997; Cracknell, 2000). However, it is often not clear how effective education and training activities are at achieving these objectives. A key challenge is lack of clarity on how the results of education and training in WASH should be measured and reported. In order to address this issue, CAWST (The Centre for Affordable Water and Sanitation Technology) and the Centre for Engineering for Sustainable Development at the University of Cambridge conducted a review of measurement and reporting strategies of education and training organizations. Strengths, limitations and best practices were identified and used to develop recommendations for how CAWST, and other education and training organizations in the WASH sector, can improve the way they measure and report their results

    Effective decrease of photoelectric emission threshold from gold plated surfaces

    Full text link
    Many applications require charge neutralisation of isolated test bodies and this has been successfully done using photoelectric emission from surfaces which are electrically benign(gold) or superconducting (niobium). Gold surfaces nominally have a high work function (∌5.1\sim 5.1\,eV)which should require deep UV photons for photoemission. In practice it has been found that it can be achieved with somewhat lower energy photons with indicative work functions of (4.1−4.3 4.1-4.3\,eV). A detailed working understanding of the process is lacking and this work reports on a study of the photoelectric emission properties of 4.6x4.6 cm^2 gold plated surfaces, representative of those used in typical satellite applications with a film thickness of 800 nm, and measured surface roughnesses between 7 and 340 nm. Various UV sources with photon energies from 4.8 to 6.2 eV and power outputs from 1 nW to 1000 nW, illuminated a ~0.3 cm^2 of the central surface region at angles of incidence from 0 to 60 degrees. Final extrinsic quantum yields in the range 10 ppm to 44 ppm were reliably obtained during 8 campaigns, covering a ~3 year period, but with intermediate long-term variations lasting several weeks and, in some cases, bake-out procedures at up to 200 C. Experimental results were obtained in a vacuum system with a baseline pressure of ~10^{-7} mbar at room temperature. A working model, designed to allow accurate simulation of any experimental configuration, is proposed.Comment: 35 pages, 12 figure

    Long-wavelength iteration scheme and scalar-tensor gravity

    Get PDF
    Inhomogeneous and anisotropic cosmologies are modeled withing the framework of scalar-tensor gravity theories. The inhomogeneities are calculated to third-order in the so-called long-wavelength iteration scheme. We write the solutions for general scalar coupling and discuss what happens to the third-order terms when the scalar-tensor solution approaches at first-order the general relativistic one. We work out in some detail the case of Brans-Dicke coupling and determine the conditions for which the anisotropy and inhomogeneity decay as time increases. The matter is taken to be that of perfect fluid with a barotropic equation of state.Comment: 13 pages, requires REVTeX, submitted to Phys. Rev.
    • 

    corecore